

Division

Here is an example of the partial-quotients algorithm using an "at least...not more than" strategy.

0/405	1	Denie estimation with multiples of 10
8)185		Begin estimating with multiples of 10.
<u>- 80</u> 105	10	How many 8s are in 185? At least 10. The first partial quotient. $10 * 8 = 80$ Subtract. 105 is left to divide.
<u>- 80</u> 25	10	How many 8s are in 105? At least 10. The second partial quotient. $10 * 8 = 80$ Subtract. 25 is left to divide.
<u> </u>	_3	How many 8s are in 25? At least 3. The third partial quotient. $3 * 8 = 24$ Subtract. 1 is left to divide.
1	23 ↑	Add the partial quotients: $10 + 10 + 3 = 23$

Remainder Quotient Answer: 23 R1

Solve.

1. 639 ÷ 9

Answer: _____

2. 954 ÷ 18

Answer:

3. 1,990 / 24

Answer:

4. 972 / 37

Answer: _____

5. Robert is making a photo album. 6 photos fit on a page. How many pages will he need for 497 photos? _____ pages

Practice

6. 2,746 + 68 = _____

Check: ____ = ___

7. 3,461 - 165 = _____

Check: _____ + ____ = ____